Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Arzu Özek,^a Süheyla Yüce,^a Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Orhan Büyükgüngör^a*

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: arzuozek@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.046 wR factor = 0.111 Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

u Özek, ^a Süheyla Yüce, ^a

2-Hydroxy-6-[(1-napthylamino)methylene]cyclohexa-2,4-dien-1-one

The molecule of the title compound, $C_{17}H_{13}NO_2$, is nearly planar and exists in the keto-amine (N-H···O) tautomeric form, with a strong intramolecular hydrogen bond of 2.576 (2) Å between the O and N atoms. The molecules are linked by O-H···O hydrogen bonds to form dimers, and are further linked by C-H··· π interactions, forming a three-dimensional network.

Received 28 July 2005 Accepted 2 September 2005 Online 14 September 2005

Comment

Schiff bases are reported to show a variety of biological activities, such as antibacterial (Pandeya *et al.*, 1999; El-masry *et al.*, 2000; Kabeer *et al.*, 2001), anticancer (Phatak *et al.*, 2000; Desai *et al.*, 2001), antifungal (Singh & Dash, 1988; More *et al.*, 2001) and herbicidal properties (Samadhiya & Halve, 2001). Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis *et al.*, 1987). Schiff bases display two possible tautomeric forms, namely phenol–imine $(O-H\cdots N)$ and keto–amine $(N-H\cdots O)$ forms. *o*-Hydroxy Schiff bases have previously been observed in the keto form (Ünver, Kabak *et al.*, 2002; Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003) and in the enol form (Ünver, Yıldız *et al.*, 2002; Karadayı *et al.*, 2003).

In the title compound, (I), the keto-amine tautomer is favoured over the phenol-imine form (Fig. 1). The C3-O1 and C1-N1 bond lengths verify the keto-amine form of (I). These distances agree with the corresponding distances in 3-[(2-oxo-1-naphthylidene)methylamino]benzoic acid [1.290 (2) and 1.319 (3) Å; Pavlović & Sosa, 2000] and 2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2*H*)one [1.3025 (16) and 1.2952 (18) Å; Odabaşoğlu, Albayrak, Büyükgüngör & Lönneche, 2003], which also show the ketoamine tautomeric form. In the crystal structure of *N*-(2pyridyl)-2-oxo-1-naphthylidenemethylamine, there are two independent molecules which constitute a tautomeric pair, with C-O bond distances of 1.263 (4) and 1.279 (4) Å in the keto-amine and enol-imine forms, respectively (Nazır *et al.*, 2000).

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Schiff base compounds can be classified by their photochromic and thermochromic chracteristics (Cohen *et al.*, 1964). On the basis of some thermochromic and photochromic Schiff base compounds, it was proposed that molecules exhibiting thermochromism are planar, while those exhibiting photochromism are non-planar (Moustakali-Mavridis *et al.*, 1978); the planarity of the molecule makes it possible for the proton to transfer through the hydrogen bond in the ground state with a low energy barrier (Bregman, Leiserowitz & Schmidt, 1964; Bregman, Leiserowitz & Osaki, 1964). The molecule of (I) is almost planar: the angle between the rings of atoms C2– C7 and C8–C12/C17 is 5.87 (8)°.

The intra- and intermolecular hydrogen bonding in (I) is shown in Fig. 2 and geometric details of the hydrogen bonds are given in Table 2. Atom H3 bonded to N1 forms a strong intramolecular hydrogen bond with atom O1, as observed in similar compounds (Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003; Albayrak *et al.*, 2004). The molecules are linked by $O-H\cdots O$ hydrogen bonds to form dimers, and further linked by $C-H\cdots \pi$ interactions (Table 2), forming a three-dimensional network.

Experimental

Compound (I) was prepared as described in the literature (Odabaşoğlu, Albayrak, Büyükgüngör & Lönneche, 2003), using 1-aminonaphthalene and 2,3-dihydroxybenzaldehyde as starting materials. Crystals of (I) were obtained from a tetrahydrofuran solution by slow evaporation (yield 88%, m.p. 508–510 K).

Crystal data

 $\begin{array}{l} C_{17}H_{13}NO_2\\ M_r = 263.28\\ Monoclinic, \ P_{21}/c\\ a = 7.3546\ (5)\ Å\\ b = 23.7901\ (17)\ Å\\ c = 7.4919\ (5)\ Å\\ \beta = 108.738\ (6)^\circ\\ V = 1241.35\ (15)\ Å^3\\ Z = 4 \end{array}$

 $D_x = 1.409 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 11212 reflections $\theta = 1.7-26.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPlate, red $0.19 \times 0.13 \times 0.05 \text{ mm}$

1668 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.063$

 $\theta_{\rm max} = 26.1^{\circ}$

 $h = -8 \rightarrow 9$ $k = -29 \rightarrow 29$

 $l = -9 \rightarrow 9$

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{min} = 0.987, T_{max} = 0.996$ 11951 measured reflections 2435 independent reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.046$	independent and constrained
$wR(F^2) = 0.111$	refinement
S = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0602P)^2]$
2435 reflections	where $P = (F_0^2 + 2F_c^2)/3$
232 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.320 (2)	C4-C5	1.367 (3)
C1-C2	1.404 (3)	C4-O2	1.370 (2)
C2-C7	1.427 (3)	C5-C6	1.411 (3)
C2-C3	1.429 (3)	C6-C7	1.357 (3)
C3-O1	1.291 (2)	C8-N1	1.415 (2)
C3-C4	1.429 (3)		
N1 - C1 - C2	121.77 (18)	O1-C3-C2	122.70 (17)
C1 - C2 - C7	119.15 (18)	O1-C3-C4	120.45 (17)
C1-C2-C3	120.57 (17)	C1-N1-C8	126.91 (17)
N1 - C1 - C2 - C7	-177.77 (17)	C2 - C1 - N1 - C8	175.65 (16)
N1 - C1 - C2 - C3	0.2 (3)	C9 - C8 - N1 - C1	2.2 (3)
C1-C2-C3-O1	3.1 (3)	C17-C8-N1-C1	-177.96(17)
N1-C8-C17-C16	-1.0 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C8-C17 and C12-C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline \\ N1-H3\cdots O1 \\ O2-H2\cdots O1^{i} \\ C13-H13\cdots Cg1^{ii} \\ C13-H13\cdots Cg2^{ii} \\ C14-H14\cdots Cg2^{ii} \\ \end{array}$	1.00 (3)	1.73 (3)	2.576 (2)	140 (2)
	0.88 (2)	1.89 (2)	2.670 (2)	148 (2)
	0.95 (2)	3.12 (2)	4.008 (2)	155 (2)
	0.95 (2)	3.26 (2)	3.705 (2)	111 (2)
	1.01 (3)	3.03 (3)	3.604 (2)	117 (2)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, $-y - \frac{1}{2}$, $z - \frac{3}{2}$.

All H atoms were located in difference Fourier maps and refined isotropically, except for atom H2 bonded to atom O2, which was refined with the O-H bond distance restrained to 0.82 (2) Å, and

with $U_{iso}(H) = 1.5U_{iso}(O)$. The C-H distances are in the range 0.95 (2)-1.02 (3) Å.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Albayrak, Ç., Odabaşoğlu, M., Büyükgüngör, O. & Lönneche, P. (2004). Acta Cryst. C60, o318–o320.
- Bregman, J., Leiserowitz, L. & Osaki, K. (1964). J. Chem. Soc. pp. 2086–2100.Bregman, J., Leiserowitz, L. & Schmidt, G. M. (1964). J. Chem. Soc. pp. 2068–2073
- Cohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041–2051.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.
- El-masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). *Molecules*, 5, 1429–1438.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). WinGX. J. Appl. Cryst. 32, 837-838.
- Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.

- Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). *Asian J. Chem.* 13, 496–500.
 Karadayı, N., Gözüyeşil, S., Güzel, B. & Büyükgüngör, O. (2003). *Acta Cryst.* E59, 0851–0853.
- More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.
- Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
- Nazır, H., Yıldız, M., Yılmaz, H., Tahir, M. N. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C**59**, o234–o236.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönneche, P. (2003). Acta Cryst. C59, o616–o619.
- Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Il Farmaco, 54, 624–628.
- Pavlović, G. & Sosa, J. M. (2000). Acta Cryst. C56, 1117-1119.
- Phatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493-494.
- Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203-209.
- Ünver, H., Yıldız, M., Zengin, D. M., Özbey, S. & Kendi, E. (2002). J. Chem. Crystallogr. 31, 211–216.